AN ALGORITHM FOR THE CHOICE OF OPTIMAL RESPONSE SURFACE DESIGNS

M. SINGH, A. DEY AND R.K. MITRA

I.A.S.R.I., New Delhi

(Received: August, 1976)

1. Introduction and Preliminaries

Several optimality criteria in general regression problems have been discussed by Kiefer [2] and Kiefer and Wolfowitz [3]. Many designs are available in literature for fitting the second order response surfaces. In particular, central composite designs, Box-Behnken designs, uniform shell designs are recommended for practical purposes. Lucas [4] has tabulated the G-efficiencies and D-efficiencies of some designs of above types. The choice between two designs can be made on the basis of comparing the efficiencies of the two designs.

Lucas [4] made use of the computer for calculation of ultimate efficiencies of various designs which involves a long process. In the present paper we have evolved an algorithm for comparing various second order response surface designs.

Following Kiefer [2] a design can be treated as a measure ξ on χ by $\xi(x)$, representing the proportion of observations taken at a point x, χ being the experimental region usually taken as [-1, 1]. In an N point design with n_i observations at $x_i \left(\sum_{i=1}^{n} n_i = N \right)$, we have

$$\xi(x_j) = \begin{cases} 0 \text{ if there are no observations at } x_j, \\ n_j/N \quad \text{if} \quad n_j > 0 \end{cases}$$

In a discrete N point design, ξ takes value 1/N and defines an exact design.

Consider the usual regression set up given by

$$E(y_x) = \sum_{i=1}^{p} \beta_i f_i(x) = \underline{f}'(x) \underline{\beta}$$

$$V(y_x) = \sigma^2$$
where $\beta = (\beta_1, \ldots, \beta_p)'$

is column vector of regression coefficients and σ^2 is the per observation variance. Given an integer N, it is desired to select a set

$$\underline{x} = (\underline{x}_1, \ldots, \underline{x}_N)'$$

of N points in χ for which the random variables

$$Y=(y_{x_1},, y_{x_N})'$$

are observed. We can also write

$$E(y_x)=f'(x)\beta$$

or

$$E(Y) = X \beta$$

where *i*-th row of X is $f'(x_i)$.

The estimated response at a point $x \in x$ along with its variance is given by

$$\hat{y}(x) = \underline{f}'(x) \hat{\beta}$$

$$V(\hat{y}(x)) = \sigma^2 f'(x) (X' X)^{-1} \underline{f}(x)$$

where $\hat{\beta}$ is least square estimate of β .

Smith [5] proposed the criterion

nin max
$$V(\hat{y}(x))$$

 $\{x_i, i=1, 2, ...N\}^{x \in X}$

for optimal experimental design when considering the polynomial regression of degree p-1 in one variable over the region x=[-1, 1]. This criterion was later called as G-optimality by Kiefer and Wolfowitz [3]. They extended this criterion in general case to a design measure satisfying

$$\xi(x) \geqslant 0, x \in \chi, \int_{x} \xi(dx) = 1$$

Thus the variance function of estimated response at a point x is given by

$$d(\mathbf{x}, \boldsymbol{\xi}) = N\underline{f}'(\mathbf{x}) (X'X)^{-1}\underline{f}(\mathbf{x}).$$

A design with measure ξ^* is said to be G-optimal if $\min_{\xi} \max_{x \in X} d(x, \xi) = \max_{x \in X} d(x, \xi^*)$.

A sufficient condition for satisfying above is

$$\max_{x \in X} d(x, \xi^*) = p.$$

The G-efficiency of a design ξ is given in comparison to an G-optimal design by $100 \ p/\text{max} \ d(x, \xi)$.

2. THE ALGORITM

Suppose it is desired to fit the second order response surface given by

$$y = \beta_0 + \sum_{i=1}^{\nu} \beta_i x_i + \sum_{i=1}^{\nu} \beta_{ii} x_i^2 + \sum_{i < i} \beta_{ij} x_i x_j$$

under the experimental region $\chi = \{\underline{x} : \underline{x}' \ \underline{x} \leq 1\}$.

In this case

$$p=(v+1)(v+2)/2$$
.

We shall consider only the second order rotatable designs (SORD) introduced by Box and Hunter [1].

The expression of the variance of estimated response at point $x_u = (x_{1u}, \dots, x_{vu})$

for the SORD ξ is

$$V(\hat{y_u}) = d(x, \xi) = \theta_0 + \theta_1 \underline{x}'_u \underline{x}_u + \theta_2 \left(\underline{x}'_u \underline{x}_u\right)^2$$

where
$$\theta_0 = (\nu + 2) \lambda_4 \sigma^2 / N \Delta$$

 $\theta_1 = \{(1/\lambda_2) - (2\lambda_2/\Delta)\} \sigma^2 / N$
 $\theta_2 = \{1 + \left(\lambda_2^2 - \lambda_4\right) / \Delta\} \sigma^2 / N$

and

$$\triangle = (\nu + 2) \lambda_4 - \nu \lambda_2^2$$

$$N \lambda_2 = \sum_{u} x_{iu}^2$$
 for all $i = 1, 2,, v$
 $N \lambda_4 = \sum_{u} x_{iu}^2 x_{ju}^2$ for all $i < j = 1, 2,, v$
 $\xi(x_u) = 1/N,$ for all $u = 1, 2,, N.$

In order to obtain the factor combination at which the variance of estimated response is maximum, it is easily noticed that the variance expression is a function of \underline{x}' , the square of the distance of point \underline{x} from origin. Thus

$$\max_{i} V(\hat{y}) = \begin{cases} \theta_0 & \text{if} & \theta_1 + \theta_2 \leq 0 \\ \theta_0 + \theta_1 + \theta_2 & \text{if} & \theta_1 + \theta_2 > 0 \end{cases}$$

that is according as the factor levels giving the maximum variance, are at the centre or at the surface of the hypersphere $\underline{x}' \underline{x} = 1$.

The condition $\theta_1 + \theta_2 \lesssim 0$ can be expressed as

$$\lambda_4 \lesssim \lambda_4^0$$

where
$$\lambda_4^0 = \left\{ \begin{array}{l} \lambda_2^2 - (\nu+1) \lambda_2/2 (\nu+2) \right\}/2 \\ + \left[\left\{ \begin{array}{l} \lambda_2^2 - (\nu+1) \lambda_2/2 (\nu+2) \right\}^2 + (\nu-1) \lambda_2^3/2 (\nu+2) \right]^{1/2} \end{array} \right.$$

In the following, we shall obtain the condition for the choice of the best design. Suppose we have designs D_1 and D_2 in N_1 and N_2 points respectively. There are three different situations for comparisons.

(i) Both the λ_4 parameters are less than their respective λ_4^0 parameters. In this case, the design D_1 is preferred to D_2 if

$$\lambda_{42}/\lambda_{41} < \lambda_{22}^2 \left/ \begin{array}{c} \lambda_{21}^2 \end{array} \right.$$

where λ_{4i} and λ_{2i} are λ_{4} and λ_{2} parameters of i th design D_{i} , i=1, 2.

In a class of such designs $\{D_j\}$ we shall choose D_i if

$$\min \left\{ \begin{array}{c} \lambda_{2j}^2 / \lambda_{4j} \end{array} \right\} = \lambda_{2i}^2 / \lambda_{4i}$$

If $\lambda_{2j}=1$ for all j, the design which has the largest λ_4 is preferred.

(ii) If λ_4 parameter of D_1 is less than λ_4^0 for the design D_1 and

 λ_4 of D_2 is greater than λ_4^0 of D_2 , then D_1 is preferred to D_2 if

$$N_1, \theta_{01} < N_2 (\theta_{02} + \theta_{12} + \theta_{22})$$

where $\theta(.)_i$'s are the $\theta(.)$ parameter of D_i , i=1, 2.

(iii) If λ_4 parameters are greater than λ_4^0 values for both the designs then D_1 is preferred to D_2 if

$$N_1 (\theta_{01} + \theta_{11} + \theta_{21}) < N_2 (\theta_{02} + \theta_{12} + \theta_{22})$$

Therefore in order to choose a best design among the set of available designs, one may check one of the above possibilities rather than making ultimate computation of G-efficiencies of all the designs as suggested in Lucas [4].

ACKNOWLEDGMENT

The authors are thankful to the referee for his suggestions on an earlier draft.

SUMMARY

An algorithm for the choice of most efficient (according to G-efficiency criterion) design among the set of a several competing designs has been worked out in case of second order rotatable designs.

REFERENCES

[1] Box, G.E.P. and Hunter, : J.S. (1957)

Multifactor experimental designs for exploring response surfaces. Ann. Math. Statist., 28, 195-241.

[2] Kiefer, J. (1959)

: Optimal experimental designs. J. Roy Statist. Soc., 20, 272-319.

[3] Kiefer, J. and Wolfowitz.: J. (1959)

Optimal designs in regression problems. Ann. Math. Statist. 30, 271-94.

[4] Lucas, J.M. (1976)

: A performance comparisons of several types of quadratic response surface designs in symmetric regions. Technometrics, 18, 411-17.

[5] Smith, K. (1918)

: On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution observations. Biometrika, 12, 1-85.